IP-PAD Data Visualization Workshop



Why do we Visualise Data?

Accurately showcase and make sense of information

Why do we Visualise Data?

Accurately showcase and make sense of information

→ Table?

Table 2: Mean values and differences in means for amount donated in "crackdown" (treatment) and "no crackdown" (control) conditions; values represent posterior medians

H _{1b}	Amount _{Treatment}	Amount _{Control}	Δ	%∆	$p(\Delta \neq 0)$
Crackdown – No crackdown	16.34	12.93	3.39	26.3%	0.97
Humanitarian assistance – Human rights	14.06	14.85	-0.82	-5.5%	0.67
Private - Government funding	15.13	13.71	1.42	10.4%	0.79
H _{2b} and H _{3b}	Amount _{Crackdown}	Amount _{No crackdown}	Δ	%∆	$p(\Delta \neq 0)$
Human rights issues	17.4	14.86	2.54	17.2%	0.83
Humanitarian assistance issues	15.91	11.68	4.3	36.9%	0.95
Government funding	13.83	12.24	1.61	13.1%	0.74
Private funding	18.95	14.23	4.62	32.4%	0.97
H _{2b} and H _{3b} (nested)	Amount _{Crackdown}	Amount _{No crackdown}	Δ	%∆	$p(\Delta \neq 0)$
Human rights issues, Government funding	10.56	15.15	-4.46	-29.5%	0.91
Human rights issues, Private funding	23.76	14.5	9.19	63.8%	0.99
Humanitarian assistance issues,	21.42	11.89	9.35	77.9%	0.99
Government funding					
Humanitarian assistance issues, Private funding	15.69	15.72	-0.05	-0.3%	0.51

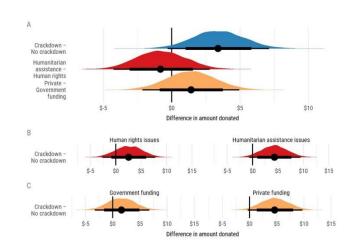
Why do we Visualise Data?

Accurately showcase and make sense of information

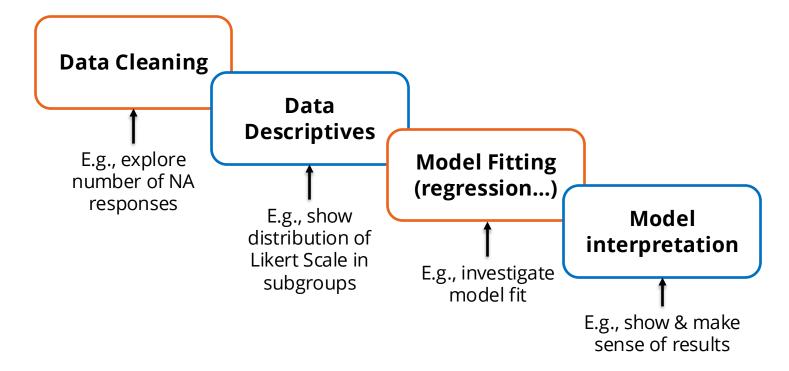
→ Accessibly & Aesthetically

Table 2: Mean values and differences in means for amount donated in "crackdown" (treatment) and "no crackdown" (control) conditions: values represent posterior medians

H _{1b}	Amount _{Treatment}	Amount _{Control}	Δ	%∆	$p(\Delta \neq 0)$
Crackdown – No crackdown	16.34	12.93	3.39	26.3%	0.97
Humanitarian assistance – Human rights	14.06	14.85	-0.82	-5.5%	0.67
Private – Government funding	15.13	13.71	1.42	10.4%	0.79
H _{2b} and H _{3b}	Amount _{Crackdown}	Amount _{No crackdown}	Δ	%∆	$p(\Delta \neq 0)$
Human rights issues	17.4	14.86	2.54	17.2%	0.83
Humanitarian assistance issues	15.91	11.68	4.3	36.9%	0.95
Government funding	13.83	12.24	1.61	13.1%	0.74
Private funding	18.95	14.23	4.62	32.4%	0.97
H _{2b} and H _{3b} (nested)	Amount _{Crackdown}	Amount _{No crackdown}	Δ	%∆	$p(\Delta \neq 0)$
Human rights issues, Government funding	10.56	15.15	-4.46	-29.5%	0.91
Human rights issues, Private funding	23.76	14.5	9.19	63.8%	0.99
Humanitarian assistance issues,	21.42	11.89	9.35	77.9%	0.99
Government funding					
Humanitarian assistance issues, Private funding	15.69	15.72	-0.05	-0.3%	0.51



Data visualization can help at many stages



Agenda

- 1. Types of Software & Tools
- 2. Introduction to ggplot2 (ggplot2)

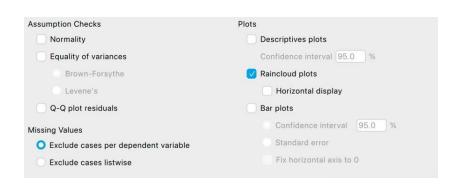
- 3. Common Plots in the Social and Cognitive Sciences
- 4. Good and Bad Practices
- 5. Useful Extensions to ggplot2

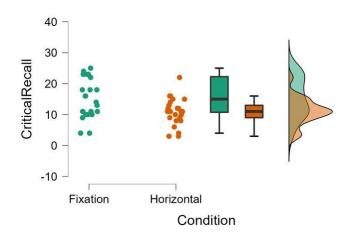
1. Types of Software & Tools

Free & Open-Source Software

- JASP: Point & click statistics program
- Python: High-level, general-purpose programming language
 - Several packages for data analysis & visualization
 - Powerful for neuroscience visualization
- R + tidyverse: Programming language for statistical computing and data visualization

- Powerful statistical software
 - From descriptives to Bayesian models, meta-analysis, SEM
- Beautiful visualisations in one click





- General purpose programming language
 - Specific packages for data analysis & visualisation

matplotlib

```
import matplotlib.pyplot as plt

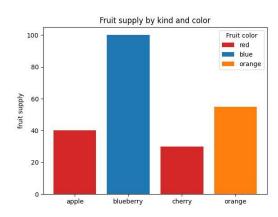
fig, ax = plt.subplots()

fruits = ['apple', 'blueberry', 'cherry', 'orange']
  counts = [40, 100, 30, 55]
  bar_labels = ['red', 'blue', '_red', 'orange']
  bar_colors = ['tab:red', 'tab:blue', 'tab:red', 'tab:orange']

ax.bar(fruits, counts, label=bar_labels, color=bar_colors)

ax.set_ylabel('fruit supply')
  ax.set_title('Fruit supply by kind and color')
  ax.legend(title='Fruit color')

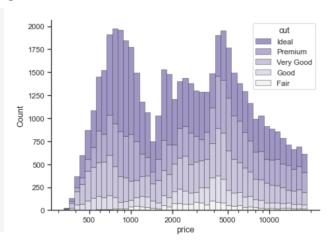
plt.show()
```



- General purpose programming language
 - Specific packages for data analysis & visualisation

seaborn

```
import seaborn as sns
import matplotlib as mpl
import matplotlib.pvplot as plt
sns.set_theme(style="ticks")
diamonds = sns.load_dataset("diamonds")
f, ax = plt.subplots(figsize=(7, 5))
sns.despine(f)
sns.histplot(
   diamonds.
   x="price", hue="cut",
   multiple="stack",
   palette="light:m r",
   edgecolor=".3".
   linewidth=.5.
    log_scale=True,
ax.xaxis.set_major_formatter(mpl.ticker.ScalarFormatter())
ax.set_xticks([500, 1000, 2000, 5000, 10000])
```

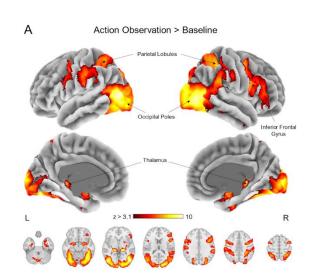


- General purpose programming language
 - Specific packages for data analysis & visualisation

nilearn

https://nilearn.github.io/dev/index.html

- Analysis and Visualisation of fMRI & MRI
- nilearn.plotting.plot_surf()



Our focus: R + tidyverse

Why R?

- Purpose-built for data analysis
- Open-source + actively maintained
- Massive community + packages

Why tidyverse?

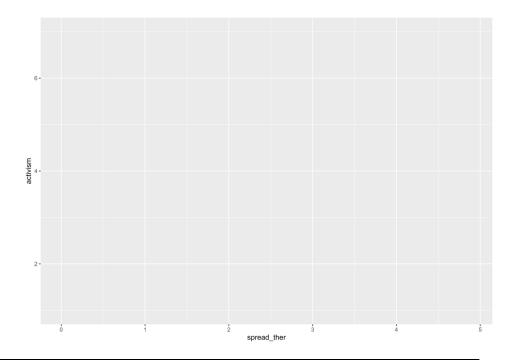
- Seamlessly integrated packages
- Readable syntax across tasks
- Makes complex tasks simple

2. Introduction to ggplot2

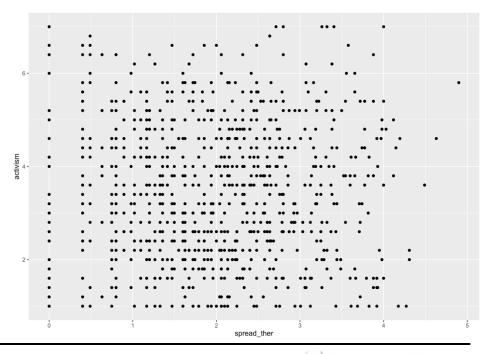
Introduction to ggplot2

- "ggplot" = "Grammar of Graphics plot 2"
- **Grammar of Graphics** = theory by Leland Wilkinson which provides a framework for visualizations based on the principles of layers, aesthetics, and mappings
- Every ggplot2 plot has three key components:
 - 1. Data
 - 2. Aesthetic mappings (variables & visual properties)
 - 3. At least one layer (how to render each observation)


```
ggplot(data = df_nl,
mapping = aes(x = spread_ther,
y = activism))
```

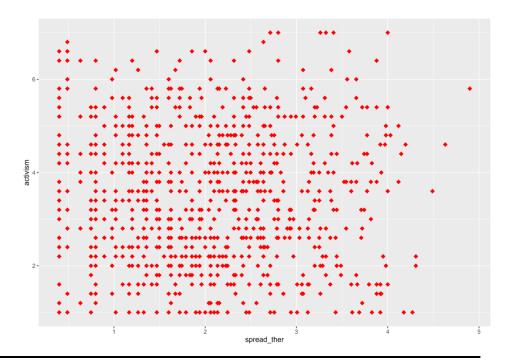


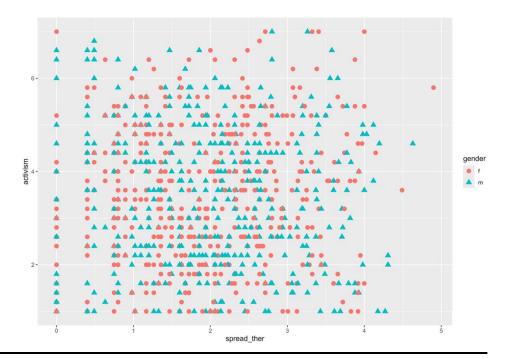

```
ggplot(data = df_nl,
mapping = aes(x = spread_ther,
y = activism))+
geom_point()
```

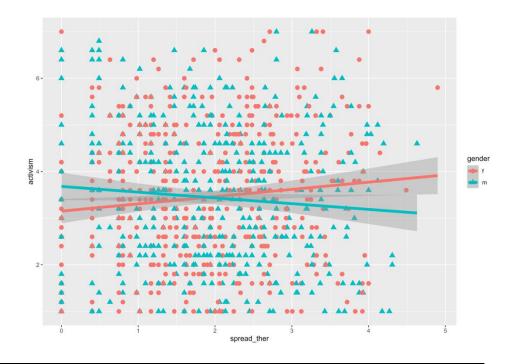


- Position (i.e., x and y-axis)
- Color (line)
- Fill (fill)
- Shape (of points)
- Line type
- Size
- Opacity


```
ggplot(data = df_nl,
mapping = aes(x = spread_ther,
y = activism))+
geom_point(color = "<mark>red</mark>",
shape = 18)
```

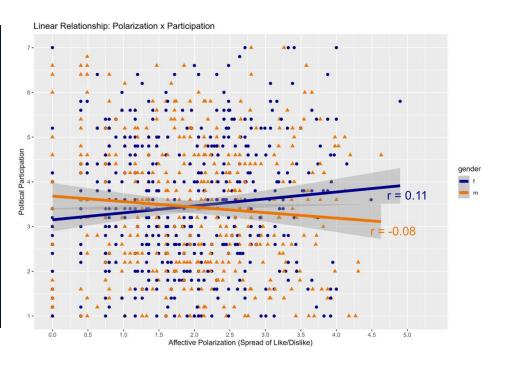




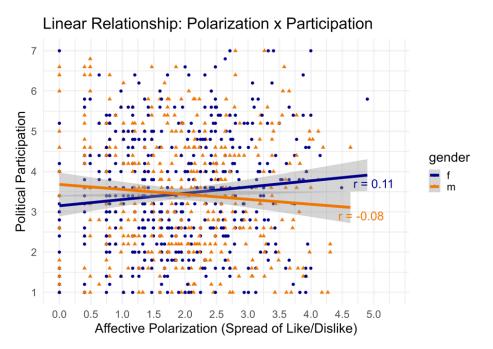




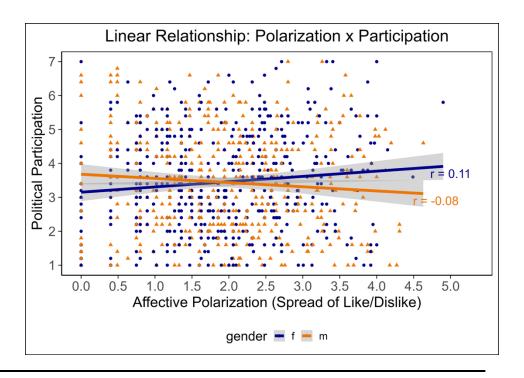

```
ggplot(data = df_nl,
      mapping = aes(x = spread_ther.
                    v = activism.
                    color = gender,
                    shape = gender))+
  geom_point(size = 2)+
 geom_smooth(linewidth = 2,
             method = "lm")+
  geom_text(data = cor_labels.
           aes(label = label).
           show. legend = FALSE.
           size = 6.5)+
  ggtitle("Linear Relationship: Polarization x Participation")+
 scale_x_continuous(
   name = "Affective Polarization (Spread of Like/Dislike)",
    limits = c(0, 5.3),
   breaks = seq(0, 5, 0.5))+
  scale_y_continuous(
    name = "Political Participation",
   limits = c(1, 7),
   breaks = seq(1, 7, 1))+
 scale_color_manual(
   values = c(
```




```
ggplot(data = df_nl,
      mapping = aes(x = spread_ther,
                    y = activism,
                     color = gender.
                    shape = gender))+
 qeom_point(size = 2)+
 geom_smooth(linewidth = 2,
             method = "lm")+
 geom_text(data = cor_labels,
           aes(label = label),
           show. legend = FALSE,
           size = 6.5)+
 ggtitle("Linear Relationship: Polarization x Participation")+
 scale_x_continuous(
   name = "Affective Polarization (Spread of Like/Dislike)",
   limits = c(0, 5.3).
   breaks = seq(0, 5, 0.5))+
 scale_v_continuous(
   name = "Political Participation",
   limits = c(1, 7),
   breaks = seq(1, 7, 1)+
 scale_color_manual(
   values = c(
 theme_minimal(base_size = 20)
```

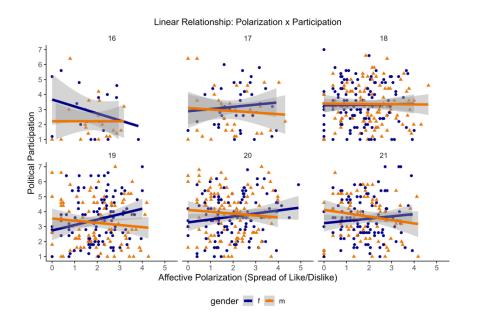



```
theme(
   axis.title.x = element_text(size = 22),
   axis.title.y = element_text(size = 22),
   axis.text.x = element_text(size = 20),
   axis.text.y = element_text(size = 20),
   legend.text = element_text(size = 20),
   legend.position = "bottom",
   plot.title = element_text(size = 25, hjust = 0.5),
   axis.line = element_line(linewidth = 0.5),
   axis.ticks = element_line(linewidth = 0.5),
   panel.background = element_rect("white"),
   plot.background = element_rect("white"),
   panel.grid.major = element_blank(),
   panel.grid.minor = element_blank()
)
```



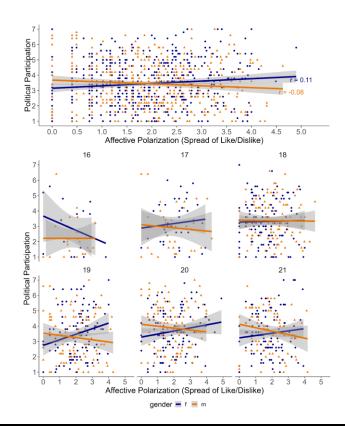
Grouping


```
ggplot(data = df_nl,
      mapping = aes(x = spread_ther,
                    y = activism,
                    color = gender,
                    shape = gender))+
 geom_point(size = 2)+
 geom_smooth(linewidth = 2,
             method = "lm")+
 ggtitle("Linear Relationship: Polarization x Participation")+
 scale_x_continuous(
   name = "Affective Polarization (Spread of Like/Dislike)",
   limits = c(0, 5.3),
   breaks = seq(0, 5, 0.5))+
 scale_y_continuous(
   name = "Political Participation",
   limits = c(1, 7),
   breaks = seq(1, 7, 1))+
 scale_color_manual(
   values = c(
 theme_minimal(base_size = 15)+
 theme(legend.position = "bottom",
       plot.title = element_text(size = 15, hjust = 0.5),
       axis.line = element_line(linewidth = 0.5),
        axis.ticks = element_line(linewidth = 0.5),
        panel.grid.major = element_blank(),
        panel.grid.minor = element_blank())+
 facet_wrap(\sim age, ncol = 3)
```



Grouping & Saving

```
POPAG
```



3. Common Plots in the Social and Cognitive Sciences

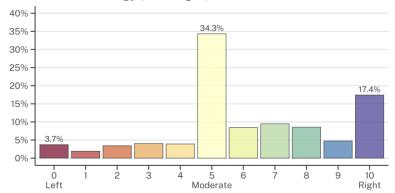
Data Descriptives

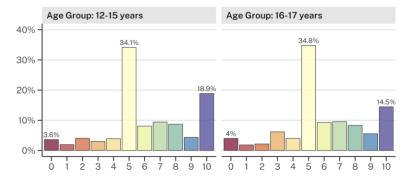
Descriptives for Categorical Variables

Bar plot

```
``{r}
# Total Sample
p_lr_all ← df ▷
 filter(!is.na(`Left-Right`)) >
 count('Left-Right') ▷
 mutate(
   percent = n / sum(n) * 100,
   `Left-Right` = factor(`Left-Right`, levels = 0:10),
   show label = `Left-Right` %in% c("0", "5", "10")
 ggplot(aes(x = `Left-Right`, y = percent / 100)) +
 geom_col(aes(fill = `Left-Right`), alpha = 0.8, color = "grey20", linewidth = 0.3) +
 geom_text(aes(label = if_else(show_label, paste0(round(percent, 1), "%"), "")),
           vjust = -0.5, size = 3.5, color = "grey25") +
 scale_fill_manual(values = ideo_col, drop = FALSE) +
 scale_x_discrete(labels = c("0\nLeft", "1", "2", "3", "4",
                              "5\nModerate", "6", "7", "8", "9", "10\nRight")) +
 scale_y_continuous(labels = scales::percent_format(accuracy = 1),
                    limits = c(0.0.40).
                    breaks = seg(0, 0.40, by = 0.05)) +
 labs(title = "Political Ideology (Left-Right)", x = NULL, y = NULL) +
 theme_ideo()
```

Political Ideology (Left-Right)

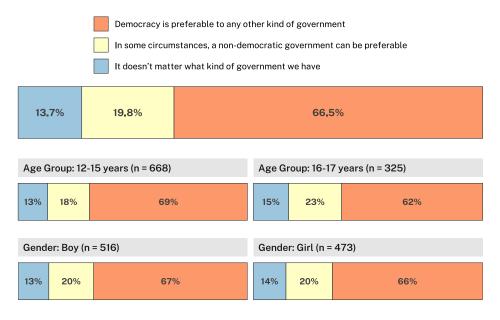




Descriptives for Categorical Variables

Stacked bar charts for Likert Scales

```
p_demsys_all ← df ▷
 count(`Democracy as System`) ▷
 mutate(pct = n / sum(n)) >
 ggplot(aes(x = pct, y = "", fill = `Democracy as System`)) +
  geom_col(position = position_stack(), alpha = 0.9, color = "grey20", linewidth = 0.3) +
   aes(label = if_else(pct \geq 0.05, paste0(round(pct * 100, 1), "%"), "")),
   position = position_stack(vjust = 0.5),
    size = 4.
    color = "grey25",
    fontface = "bold"
 scale fill manual(values = demsys col) +
 scale_x_continuous(labels = percent_format(), expand = c(0, 0)) +
 labs(
   x = NULL
   y = NULL,
   fill = NULL
 theme likert() +
 guides(fill = guide_legend(reverse = FALSE, nrow = 3, label.theme = element_text(size = 10)))
```

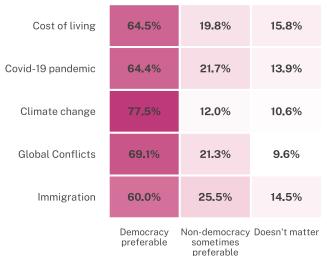


Relationship between Categorical Variables

Tile Plots

 E.g., Is Democratic Support Associated with which Crisis Young People found most impactful on their lives?

```
p_formative_tile ← df_formative_tile ▷
  ggplot(aes(x = `Democracy as System`, y = `Formative Issue`)) +
  geom_tile(aes(fill = pct), color = "white", linewidth = 1) +
  geom text(aes(label = sprintf("%.1f%%", pct)),
            color = "grey25", size = 4, fontface = "bold") +
 scale_fill_gradient(low = "white", high = "#BE3979") +
  scale_x_discrete(labels = function(x) str_wrap(x, width = 15)) +
  labs(
   x = NULL
   y = NULL,
    fill = "Percentage",
  theme_nice() +
  theme(
    legend.position = "none",
   panel.grid = element_blank(),
    axis.text.x = element_text(size = 10, hjust = 0.5),
    axis.text.v = element text(size = 11).
    plot.title = element text(face = "bold", size = 14, hjust = 0),
    plot.subtitle = element text(size = 11. hjust = 0. color = "grev40")
```



Relationship between Continuous Variables

Scatter plot

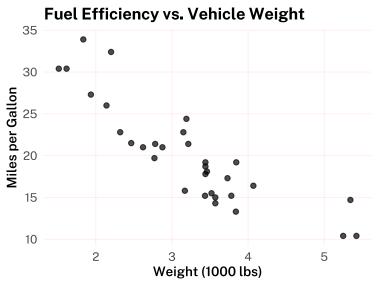
```
Tig.height=4, fig.width=5, fig.dpi=600, fig.showtext=TRUE}

my_first_plot ← mtcars ▷

mutate(cyl = factor(cyl, labels = c("4 Cylinders", "6 Cylinders", "8 Cylinders")))

ggplot(aes(x = wt, y = mpg)) +
geom_point(size = 2, alpha = 0.7) +
labs(
    title = "Fuel Efficiency vs. Vehicle Weight",
    x = "Weight (1000 lbs)",
    y = "Miles per Gallon",
    color = "Weight",
    caption = "Data: mtcars dataset"
) +
theme_nice() +
theme(legend.position = "none")

my_first_plot
```



Data: mtcars dataset

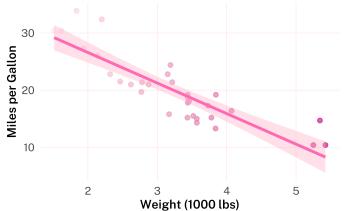
Relationship between Continuous Variables

Scatter plot + linear regression line

```
`{r fig.height=4, fig.width=5, fig.dpi=600, fig.showtext=TRUE}
my_first_plot ← mtcars ▷
 mutate(cyl = factor(cyl, labels = c("4 Cylinders", "6 Cylinders", "8 Cylinders"))) ▷
 ggplot(aes(x = wt, y = mpg)) +
 geom point(aes(color = wt), size = 2, alpha = 0.7) +
 geom_smooth(method = "lm", se = TRUE, color = "#FF6984", fill = "#FFB3C6", linewidth = 1.4) +
 scale color gradient(low = "#FFE5EC", high = "#C71585") +
  labs(
   title = "Fuel Efficiency vs. Vehicle Weight",
   subtitle = "Linear relationship across different engine sizes".
   x = "Weight (1000 lbs)",
   y = "Miles per Gallon",
   color = "Weight",
    caption = "Data: mtcars dataset"
  theme_nice() +
 theme(legend.position = "none")
my_first_plot
```

Fuel Efficiency vs. Vehicle Weight

Linear relationship across different engine sizes



Data: mtcars dataset

Relationship between Continuous Variables

geom_smooth / stat_smooth actually fit models \rightarrow quick spotting of patterns in the data (y ~ x)

```
`{r fig.height=4, fig.width=5, fig.dpi=600, fig.showtext=TRUE}
my_first_plot ← mtcars ▷
 mutate(cyl = factor(cyl, labels = c("4 Cylinders", "6 Cylinders", "8 Cylinders"))) ▷
 ggplot(aes(x = wt, y = mpg)) +
 geom noint(aes(color = wt) size = 2 alnha = 0.7).
 geom smooth(method = "lm". se = TRUE. color = "#FF69B4". fill = "#FFB3C6". linewidth = 1.4) +
 scale_color_gradient(low - "#FFE5EC", high
 labs(
   title = "Fuel Efficiency vs. Vehicle Weight",
   subtitle = "Linear relationship across different engine sizes".
   x = "Weight (1000 lbs)",
   v = "Miles per Gallon".
   color = "Weight",
    caption = "Data: mtcars dataset"
  theme_nice() +
 theme(legend.position = "none")
my_first_plot
```

Fuel Efficiency vs. Vehicle Weight Linear relationship across different engine sizes 30 10

Weight (1000 lbs)

Data: mtcars dataset

Model Interpretation

Model interpretation

- We often don't just describe data but also fit statistical models (e.g., t-test, logistic regression, linear mixed models,...)
- We often have more than just an outcome and predictor
 - E.g., control variables, interaction, experimental conditions ...
- Rather than using geom_smooth() → We want to plot the effects from our models!

Example: Democratic Support

- 1. Do Democrats and Republicans differ in their level of democratic support (controlling for age, gender, education)?
- 2. Is the association between affective polarisation and democratic support different for Democrats and Republicans (controlling for age, gender, education)?


```
```{r}
```

mod ← lm(democratic\_support ~ party \* affective\_polarisation + age + gender + education, data = survey\_data)
summary(mod)



#### Call:

lm(formula = democratic\_support ~ party \* affective\_polarisation +
 age + gender + education, data = survey\_data)

#### Residuals:

Min 1Q Median 3Q Max -59.655 -11.565 3.185 15.211 34.831

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)

		000		( .   .   )	
(Intercent)	58 09580	5 92879	9 799	< 20-16	***
party1	4.63471	1.21219	3.823	0.000163	***
affective_polarisation	0.84399	1.21666	0.694	0.488460	
age	0.22099	0.07675	2.879	0.004302	**
genderWoman	-0.04972	2.42582	-0.020	0.983662	
genderOther	-21.18842	20.28665	-1.044	0.297201	
educationCollege, but not degree	7.01527	4.37776	1.602	0.110206	
education2-year college degree	8.16225	4.84624	1.684	0.093278	
education4-year college degree	9.12924	3.98320	2.292	0.022671	*
educationPostgraduate degree	2.91476	4.12847	0.706	0.480781	
party1:affective_polarisation	2.85017	1.21957	2.337	0.020161	*

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 19.64 on 273 degrees of freedom Multiple R-squared: 0.1264, Adjusted R-squared: 0.0944 F-statistic: 3.95 on 10 and 273 DF, p-value: 4.778e-05



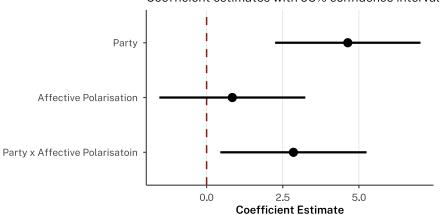
### Coefficient Forest Plots



```
forest_data
ggplot(aes(x = estimate, y = term, xmin = conf.low, xmax = conf.high)) +
Add vertical line at zero (null effect)
geom_vline(xintercept = 0, linetype = "dashed", color = "firebrick4", linewidth = 0.8) +
Add point estimates with confidence intervals
geom_pointrange(color = "black", linewidth = 1.2, size = 0.8) +
Labels
labs(
 title = "Predictors of Democratic Support",
 subtitle = "Coefficient estimates with 95% confidence intervals",
 x = "Coefficient Estimate",
 y = NULL
) +
theme(panel.grid.major.y = element_blank())
```

#### **Predictors of Democratic Support**

Coefficient estimates with 95% confidence interval

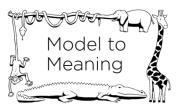




## A Very Short Intro to `marginaleffects`



- Marginal effects → model-agnostic
  - Does not care about contrast coding (e.g., contr.sum)
- Models as prediction machines (Rohrer & Arel-Bundock, 2025)
  - Predictions Model-based estimates (e.g., predicted means across countries)
  - Comparisons Differences between conditions (e.g., treatment vs. control)
  - Slopes Rate of change of a predictor (e.g., how effect of X varies by moderator)





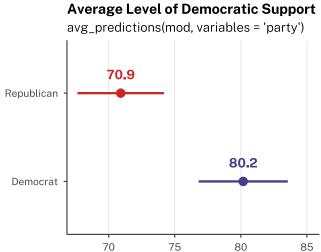


### Average predictions (marginal means)



Do Democrats and Republicans differ in their level of democrat support (averaged across all other variables in our model)?



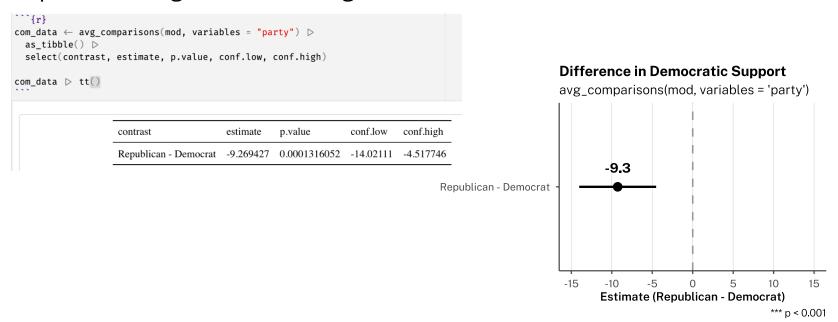




## Average comparisons



 Is the difference in democratic support between Democrats and Republicans significant (averaged over all other variables in the model)?





## Average Slopes by Party



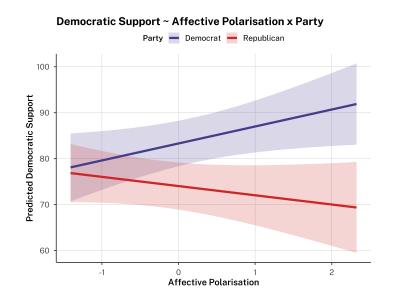
What is the association between affective polarisation and democratic support in Democrats and Republicans (on average)? → Helps understand significant interactions!

```
```{r}
avg_slopes(mod, variables = "affective_polarisation", by = "party") >
  as_tibble() ▷
  select(party, estimate, p.value, conf.low, conf.high) ▷
  tt()
                                     estimate
                                               p.value
                                                           conf.low
                                                                       conf.high
                          party
                                               0.03574634 0.2460141
                                                                       7.142308
                          Democrat
                                     3.694161
                          Republican -2.006172 0.23398036 -5.3099284
                                                                       1.297584
```


Interpreting interactions

Is the association between affective polarisation and democratic support different for Democrats and Republicans (on average across other variables)?

```
```{r fig.height=5.5, fig.width=7, fig.dpi=600, fig.showtext=TRUE}
plot_predictions(mod,
 condition = c("affective_polarisation", "party"),
 draw = FALSE) ▷ # Get the data instead of the plot
 ggplot(aes(x = affective_polarisation, y = estimate,
 ymin = conf.low, ymax = conf.high,
 color = party, fill = party)) +
 # Confidence ribbon
 geom_ribbon(alpha = 0.2, color = NA) +
 # Prediction line with custom thickness
 geom line(linewidth = 1.5) +
 # Colors
 scale_color_manual(values = c("Democrat" = "slateblue4", "Republican" =
 scale_fill_manual(values = c("Democrat" = "slateblue4", "Republican" = "firebrick3")) +
 # Labels
 labs(
 title = "Democratic Support ~ Affective Polarisation x Party",
 x = "Affective Polarisation",
 y = "Predicted Democratic Support",
 color = "Party".
 fill = "Party"
 theme nice()
```



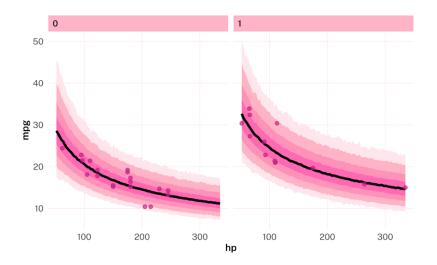


## More fancy Bayesian stuff ...



```
{r}
m_mpg_am = brm(
mpg ~ log(hp) * am,
data = mtcars,
family = lognormal
)
```

```
mtcars %>%
 data_grid(hp = seq_range(hp, n = 101), am) %>%
 add_predicted_draws(m_mpg_am) %>%
 ggplot(aes(x = hp, y = mpg)) +
 # Pink ribbons with custom line color
 stat_lineribbon(aes(y = .prediction), .width = c(.99, .95, .8, .5),
 color = "black", linewidth = 1.4) +
 geom_point(data = mtcars, color = "#C71585", size = 2, alpha = 0.7) +
 # Pink color palette for ribbons (lightest to darkest)
 scale_fill_manual(values = c("#FFE5EC", "#FFB3C6", "#FF92B8", "#FF69B4")) +
 labs(v = "mpg") +
 facet wrap(~ am) +
 theme nice() +
 theme(
 # Light pink grid lines
 panel.grid.major = element line(color = "#FFE5EC", linewidth = 0.3),
 # Make axis lines and ticks invisible
 axis.line = element_blank(),
 axis.ticks = element_blank(),
 legend.position = "none"
```





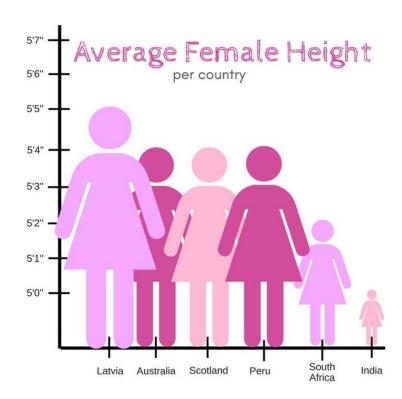
Will sometimes depend on context & purpose!!!

**Bad Practices** 





Misleading y-axis



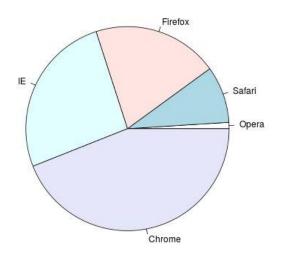




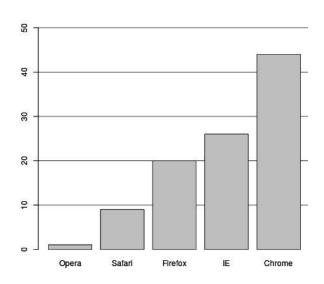


• Pie charts (in general)

Browser Usage (August 2013)



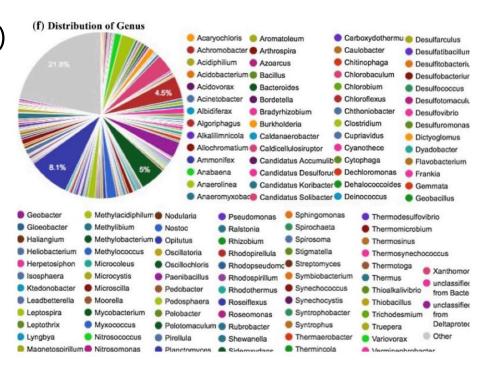
#### Browser Usage (August 2013)







- Pie charts (in general) and visual overload
- Legend

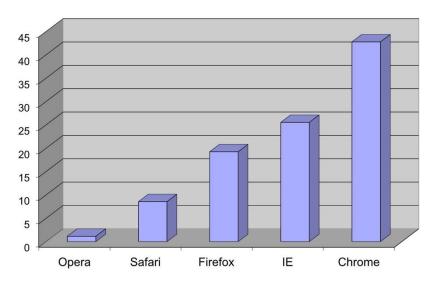






Low data/ink-ratio or unnecessary 3D elements

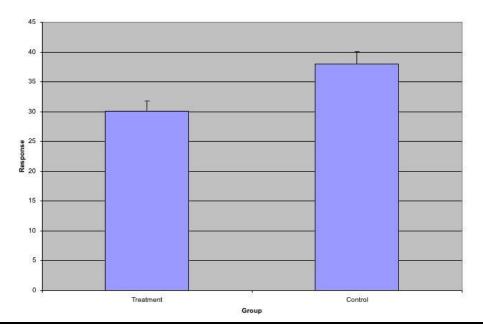
#### **Browser Usage (August 2013)**







• Bar plots to summarize data:

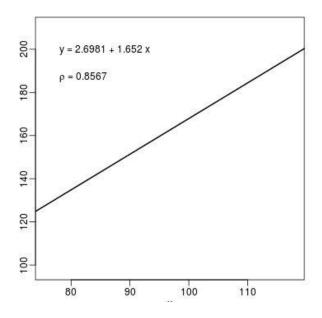








Regression line without confidence bands or data points:







Use of AI to generate the figure

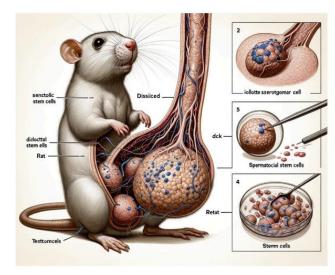
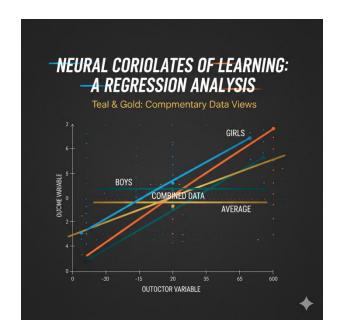


FIGURE 1
Spermatogonial stem cells, isolated, purified and cultured from rat testes.







- Lack of accessibility:
  - Small font
  - No colorblind-friendly palette
  - Missing labels or figure notes
  - O ..



## Supplementary Resources

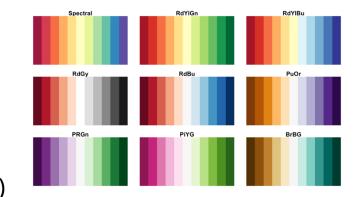


## Aesthetics



### Color Palettes

- RColorBrewer: <a href="https://colorbrewer2.org/">https://colorbrewer2.org/</a>
  - ggplot: scale\_fill\_brewer(palette = "Spectral")
- Viridis Color Palettes: <a href="https://cran.r-">https://cran.r-</a>
   project.org/web/packages/viridis/vignettes/intro-to-viridis.html
  - ggplot: scale\_color\_viridis\_d(option = "inferno")
- Beyonce Palettes: <a href="https://github.com/dill/beyonce">https://github.com/dill/beyonce</a>
- Paul Tol's Notes: <a href="https://cran.r-">https://cran.r-</a>
   project.org/web/packages/khroma/vignettes/tol.html







## Fonts (Sans Serif Fonts)



- Public Sans
- Roboto Condensed
- Arial Narrow
- Open Sans
- Source Sans Pro



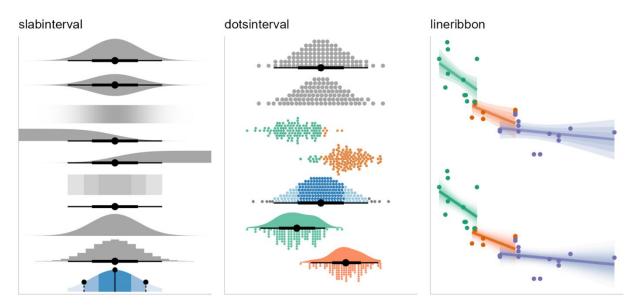
Useful Extensions to ggplot2 in R



## ggdist



Visualizations of distributions and uncertainty



Some examples from the three main families of ggdist geometries





## Visualising Textual Responses



#### library(wordcloud2) in R

#### What do you associate with the term 'Right'?



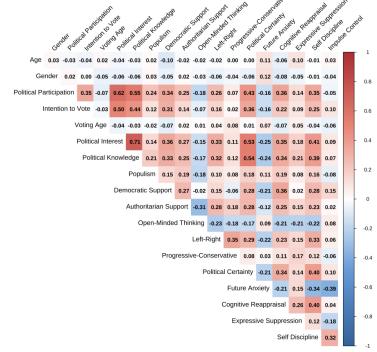


## Visualising Correlations (corrplot)



#### library("corrplot")

```
``{r fig.width=12, fig.height=10}
select data
corr data ← df ▷
 select(Age, Gender,
 'Political Participation', 'Intention to Vote', 'Voting Age',
 'Political Interest', 'Political Knowledge',
 Populism, 'Democratic Support', 'Authoritarian Support', 'Open-Minded Thinking',
 `Left-Right`, `Progressive-Conservative`, `Political Certainty`,
 `Future Anxiety`, `Cognitive Reappraisal`, `Expressive Suppression`,
 `Self Discipline`, `Impulse Control`) >
 mutate(across(c(Gender, `Political Interest`), as.numeric))
correlation analysis
corrs ← cor(corr_data)
corrs p ← cor.mtest(corr data, conf.level = 0.95)
plot it
col ← colorRampPalette(c("#4477AA", "#77AADD", "#FFFFFF", "#EE9988
corrplot(corrs, method="color", col=col(200),
 type="upper", order="original",
 addCoef.col = "black", # Add coefficient of correlation
 tl.col="black", tl.srt=45, # Text label color and rotation,
 # p.mat = corrs p$p, sig.level = 0.05, insig = "blank",
 diag=FALSE, number.cex=0.85
```





## Ridge Plots (ggridges)

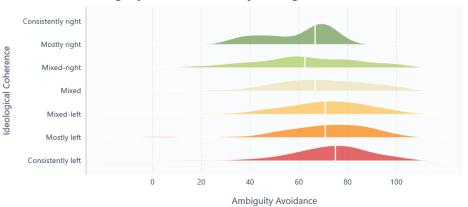
ggridges 0.5.7 Reference Articles ▼ Changelog



#### ggridges: Ridgeline plots in ggplot2

Ridgeline plots are partially overlapping line plots that create the impression of a mountain range. They can be quite useful for visualizing changes in distributions over time or space.

#### Ambiguity Avoidance Score by Ideological Coherence Level



Ambiguity Avoidance measured using a POMP-scored composite of four items  $\alpha = 0.802$ 

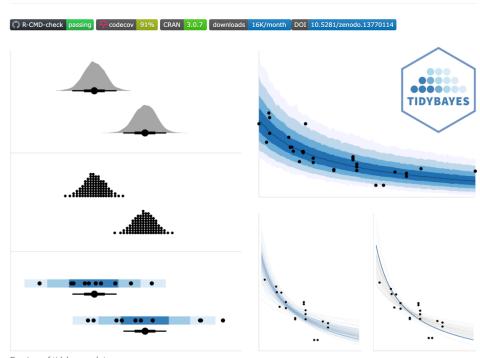




## tidybayes



#### tidybayes: Bayesian analysis + tidy data + geoms



Preview of tidybayes plots





## ggstats



E.g., includes geom\_likert()

# ggstats: extension to ggplot2 for plotting stats

The ggstats package provides new statistics, new geometries and new positions for ggplot2 and a suite of functions to facilitate the creation of statistical plots.

#### Installation & Documentation

To install stable version:

```
install.packages("ggstats")
```

```
ggplot(diamonds) +
 aes(y = clarity, fill = cut) +
 geom bar(position = "likert") +
 geom text(
 aes(by = clarity, label = custom_label(after stat(prop))),
 stat = "prop",
 position = position_likert(vjust = .5)
 scale x continuous(label = label percent abs()) +
 scale fill likert() +
 xlab("proportion")
 15% 13%
 68%
 VVS1 -
 22%
 56%
 24%
 VVS2 -
 17%
 51%
 cut
 Fair
clarity
NS2 -
 22%
 24%
 44%
 Good
 Very Good
 21%
 27%
 41%
 Premium
 Ideal
 SI1 -
 25%
 27%
 SI2 -
 23%
 32%
 28%
 13% 11%
 11 -
 50%
 50%
 0%
 proportion
```



